Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust.

Identifieur interne : 000761 ( Main/Exploration ); précédent : 000760; suivant : 000762

Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust.

Auteurs : Houyang Kang [République populaire de Chine] ; Yi Wang ; George Fedak ; Wenguang Cao ; Haiqin Zhang ; Xing Fan ; Lina Sha ; Lili Xu ; Youliang Zheng ; Yonghong Zhou

Source :

RBID : pubmed:21760909

Descripteurs français

English descriptors

Abstract

Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat-P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding.

DOI: 10.1371/journal.pone.0021802
PubMed: 21760909
PubMed Central: PMC3132739


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust.</title>
<author>
<name sortKey="Kang, Houyang" sort="Kang, Houyang" uniqKey="Kang H" first="Houyang" last="Kang">Houyang Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan</wicri:regionArea>
<wicri:noRegion>Sichuan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yi" sort="Wang, Yi" uniqKey="Wang Y" first="Yi" last="Wang">Yi Wang</name>
</author>
<author>
<name sortKey="Fedak, George" sort="Fedak, George" uniqKey="Fedak G" first="George" last="Fedak">George Fedak</name>
</author>
<author>
<name sortKey="Cao, Wenguang" sort="Cao, Wenguang" uniqKey="Cao W" first="Wenguang" last="Cao">Wenguang Cao</name>
</author>
<author>
<name sortKey="Zhang, Haiqin" sort="Zhang, Haiqin" uniqKey="Zhang H" first="Haiqin" last="Zhang">Haiqin Zhang</name>
</author>
<author>
<name sortKey="Fan, Xing" sort="Fan, Xing" uniqKey="Fan X" first="Xing" last="Fan">Xing Fan</name>
</author>
<author>
<name sortKey="Sha, Lina" sort="Sha, Lina" uniqKey="Sha L" first="Lina" last="Sha">Lina Sha</name>
</author>
<author>
<name sortKey="Xu, Lili" sort="Xu, Lili" uniqKey="Xu L" first="Lili" last="Xu">Lili Xu</name>
</author>
<author>
<name sortKey="Zheng, Youliang" sort="Zheng, Youliang" uniqKey="Zheng Y" first="Youliang" last="Zheng">Youliang Zheng</name>
</author>
<author>
<name sortKey="Zhou, Yonghong" sort="Zhou, Yonghong" uniqKey="Zhou Y" first="Yonghong" last="Zhou">Yonghong Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21760909</idno>
<idno type="pmid">21760909</idno>
<idno type="doi">10.1371/journal.pone.0021802</idno>
<idno type="pmc">PMC3132739</idno>
<idno type="wicri:Area/Main/Corpus">000742</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000742</idno>
<idno type="wicri:Area/Main/Curation">000742</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000742</idno>
<idno type="wicri:Area/Main/Exploration">000742</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust.</title>
<author>
<name sortKey="Kang, Houyang" sort="Kang, Houyang" uniqKey="Kang H" first="Houyang" last="Kang">Houyang Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan</wicri:regionArea>
<wicri:noRegion>Sichuan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yi" sort="Wang, Yi" uniqKey="Wang Y" first="Yi" last="Wang">Yi Wang</name>
</author>
<author>
<name sortKey="Fedak, George" sort="Fedak, George" uniqKey="Fedak G" first="George" last="Fedak">George Fedak</name>
</author>
<author>
<name sortKey="Cao, Wenguang" sort="Cao, Wenguang" uniqKey="Cao W" first="Wenguang" last="Cao">Wenguang Cao</name>
</author>
<author>
<name sortKey="Zhang, Haiqin" sort="Zhang, Haiqin" uniqKey="Zhang H" first="Haiqin" last="Zhang">Haiqin Zhang</name>
</author>
<author>
<name sortKey="Fan, Xing" sort="Fan, Xing" uniqKey="Fan X" first="Xing" last="Fan">Xing Fan</name>
</author>
<author>
<name sortKey="Sha, Lina" sort="Sha, Lina" uniqKey="Sha L" first="Lina" last="Sha">Lina Sha</name>
</author>
<author>
<name sortKey="Xu, Lili" sort="Xu, Lili" uniqKey="Xu L" first="Lili" last="Xu">Lili Xu</name>
</author>
<author>
<name sortKey="Zheng, Youliang" sort="Zheng, Youliang" uniqKey="Zheng Y" first="Youliang" last="Zheng">Youliang Zheng</name>
</author>
<author>
<name sortKey="Zhou, Yonghong" sort="Zhou, Yonghong" uniqKey="Zhou Y" first="Yonghong" last="Zhou">Yonghong Zhou</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (physiology)</term>
<term>Chromosome Banding (MeSH)</term>
<term>Chromosome Pairing (genetics)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Electrophoresis, Agar Gel (MeSH)</term>
<term>Immunity, Innate (genetics)</term>
<term>In Situ Hybridization (MeSH)</term>
<term>Inbreeding (MeSH)</term>
<term>Meiosis (MeSH)</term>
<term>Metaphase (MeSH)</term>
<term>Minisatellite Repeats (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Poaceae (genetics)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Triticum (cytology)</term>
<term>Triticum (genetics)</term>
<term>Triticum (immunology)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Appariement des chromosomes (génétique)</term>
<term>Basidiomycota (physiologie)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Croisement consanguin (MeSH)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Hybridation in situ (MeSH)</term>
<term>Immunité innée (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Méiose (MeSH)</term>
<term>Métaphase (MeSH)</term>
<term>Poaceae (génétique)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Répétitions minisatellites (génétique)</term>
<term>Triticum (cytologie)</term>
<term>Triticum (génétique)</term>
<term>Triticum (immunologie)</term>
<term>Triticum (microbiologie)</term>
<term>Zébrage chromosomique (MeSH)</term>
<term>Électrophorèse sur gel d'agar (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Leaves</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosome Pairing</term>
<term>Chromosomes, Plant</term>
<term>Immunity, Innate</term>
<term>Minisatellite Repeats</term>
<term>Poaceae</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Appariement des chromosomes</term>
<term>Chromosomes de plante</term>
<term>Immunité innée</term>
<term>Poaceae</term>
<term>Répétitions minisatellites</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Banding</term>
<term>Electrophoresis, Agar Gel</term>
<term>In Situ Hybridization</term>
<term>Inbreeding</term>
<term>Meiosis</term>
<term>Metaphase</term>
<term>Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Croisement consanguin</term>
<term>Hybridation in situ</term>
<term>Méiose</term>
<term>Métaphase</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Zébrage chromosomique</term>
<term>Électrophorèse sur gel d'agar</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat-P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21760909</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust.</ArticleTitle>
<Pagination>
<MedlinePgn>e21802</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0021802</ELocationID>
<Abstract>
<AbstractText>Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat-P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Houyang</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fedak</LastName>
<ForeName>George</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Wenguang</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Haiqin</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Xing</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sha</LastName>
<ForeName>Lina</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Lili</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Youliang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yonghong</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002871" MajorTopicYN="N">Chromosome Banding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023902" MajorTopicYN="N">Chromosome Pairing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004587" MajorTopicYN="N">Electrophoresis, Agar Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007178" MajorTopicYN="Y">Inbreeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008540" MajorTopicYN="N">Meiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008677" MajorTopicYN="N">Metaphase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018598" MajorTopicYN="N">Minisatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>03</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21760909</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0021802</ArticleId>
<ArticleId IdType="pii">PONE-D-11-05305</ArticleId>
<ArticleId IdType="pmc">PMC3132739</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:75-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Jun;121(1):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20198466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China C Life Sci. 1997 Jun;40(3):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18726334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Feb;116(3):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1993 Jun;36(3):476-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18470001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2005 Nov;95(11):1266-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 May;114(8):1379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17356867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1994 Aug;10(8):265-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7940753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Aug;149(4):2007-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2000 Aug;43(4):712-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10984185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jul;232(2):501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20490543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2008;16(8):1097-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18855109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Oct;109(6):1105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15490101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1990 Jan;79(1):45-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Aug;121(3):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20407740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 29;316(5833):1862-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cao, Wenguang" sort="Cao, Wenguang" uniqKey="Cao W" first="Wenguang" last="Cao">Wenguang Cao</name>
<name sortKey="Fan, Xing" sort="Fan, Xing" uniqKey="Fan X" first="Xing" last="Fan">Xing Fan</name>
<name sortKey="Fedak, George" sort="Fedak, George" uniqKey="Fedak G" first="George" last="Fedak">George Fedak</name>
<name sortKey="Sha, Lina" sort="Sha, Lina" uniqKey="Sha L" first="Lina" last="Sha">Lina Sha</name>
<name sortKey="Wang, Yi" sort="Wang, Yi" uniqKey="Wang Y" first="Yi" last="Wang">Yi Wang</name>
<name sortKey="Xu, Lili" sort="Xu, Lili" uniqKey="Xu L" first="Lili" last="Xu">Lili Xu</name>
<name sortKey="Zhang, Haiqin" sort="Zhang, Haiqin" uniqKey="Zhang H" first="Haiqin" last="Zhang">Haiqin Zhang</name>
<name sortKey="Zheng, Youliang" sort="Zheng, Youliang" uniqKey="Zheng Y" first="Youliang" last="Zheng">Youliang Zheng</name>
<name sortKey="Zhou, Yonghong" sort="Zhou, Yonghong" uniqKey="Zhou Y" first="Yonghong" last="Zhou">Yonghong Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Kang, Houyang" sort="Kang, Houyang" uniqKey="Kang H" first="Houyang" last="Kang">Houyang Kang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000761 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000761 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21760909
   |texte=   Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21760909" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020